(c) 1995-present

Last Original Papers



Korpan NN. Hepatic cryosurgery for liver metastases. Long-term follow-up. Annals of Surgery 1997; Feb;225(2):193-201. Impact Factor: 10.130.
doi: 10.1097/00000658-199702000-00007.




The stability of the dormant state of tumor cells, which can be activated to proliferate by an unknown mechanism, is a challenging problem. Trigger mechanisms potentially include a threshold change in the intensity of tumor-cell spatial migratory processes, such as during invasive clinical diagnostic interventions. The problem constituted by the antitumor immune response of biological organisms lacks a satisfactory solution, as the inherent questions have not been mathematically formulated. The clinical studies were conducted in a single center and all patients with primary breast cancer (n=17) and malignant melanoma (n=16) were randomly selected and diagnosed. The patients have undergone cryo-diagnostics with a view to histological and immunohistochemical investigations. The key hypothetical human malignant tumor prototypical models were created. It was found that the use of ultra-low temperatures has a stabilizing effect on dormant tumor cells, reducing the risk of provoking the beginning of their unlimited reproduction as a result of an invasive diagnostic procedure. To understand the mechanism of such stabilization, a mathematical model of the stability of the dormant state of tumor cells is developed. The discrete set of ranges of changes in the diffusion coefficients has been established to determine the intensity of cell migration at which diffusion instability of tumor-cell dormancy occurs. The obtained clinical investigations and mathematical estimations may be utilized to facilitate of standard tumor diagnostics and cryogenic diagnostics in living biological matter to solve the problems of dormancy and “sneaking through” of tumors and to identify the connection between them and the problem of the dose-dependent effects of immunotherapy.

Keywords: invasive cancer standard diagnostics, ultra-low temperature, invasive tumor cryogenic diagnostics, mathematical modeling, volcanic tumor cluster


Conclusions and perspectives

The proposed invasive cryo-diagnostic approach clearly surpasses the extant scope of surgical oncology and potentially facilitates the replacement of standard invasive cancer diagnostics approaches by evolved tumor cryo-diagnostics in surgical oncology. With a unified approach, the relationship between mechanisms such as the loss of stability of the TDS and the subsequent tumor cell escape in the ST phenomenon can be understood. The established dependence of diffusion-instability TD in a homogeneous stationary state suggests an ambiguous dose-dependent response of the tumor cell population to immuno-stimulating therapy. These findings provide a basis for the development of ultra-low temperature methods in invasive diagnostic procedures that eliminate or minimize diffusion instability. The fundamental novel research on ultra-low temperatures in biomedical science and praxis, which is aimed at en bloc tumor cryo-immobilization for absolute prevention of local recurrence and multiple distant metastases, has implications for a paradigm shift in medicine, especially surgical oncology, in cancer patients.


Other Notes
250-word abstract
6496 words of text
Number of figures: 7
Tables: 0
References: 45
Supplementary materials: 5
Appendix: 1

[1]       P.K. Burgess, P.M. Kulesa, J.D. Murray, E.C. Alvord. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J Neuropathol Exp Neurol 1997; 56:704–713.
[2]       S.G. Chefranov. The theory of large-scale turbulent transport of chemical active pollution.Izv Vuzov Radiophysics 1985; 28:1516–1523.
[3]       M.R. Chicoine, D.L. Silbergeld. Assessment of brain tumor cell motility in vivo and in vitro. J Neurosurg 1995; 82:615–622.
[4]       M.E. Colmerauer, J.A. Koziol, Y.H. Pilch. Enhancement of metastasis development by BCG immunotherapy. J Surg Oncol 1980; 15:235–241.
[5]       C. Criscitiello, F. André, A.M. Thompson, M. De Laurentiis, A. Esposito, L. Gelao. Biopsy confirmation of metastatic sites in breast cancer patients: clinical impact and future perspectives. Breast Cancer Res 2014; 16:205.
[6]       R.J. de Boer, P. Hogeweg. Interactions between macrophages and T-lymphocytes: tumor sneaking through intrinsic to helper T cell dynamics. J Theor Biol 1986; 120:331–351.
[7]       G.I. Deichman, T.E. Kluchareva, L.M. Kashkina, V.A. Matveeva. Reproducibility and relation to specific and non-specific anti-tumor resistance of the tumor “sneaking through” phenomenon. Int J Cancer 1979; 23:571–584.
[8]       C. DeLisi, A. Rescigno. Immune surveillance and neoplasia. I. A minimal mathematical model. Bull Math Biol 1977; 39:201–221.
[9]       L.K. Garkavi, E.B. Kvakina. The outlook for combining anti-tumor and activation therapies. Vopr Onkol 1995; 41:47–48. (Russian).
[10]     L.K. Garkavi, E.B. Kvakina, E.A. Sheiko. AMP-induced enhancement of anti-tumor effect in the rats with transplantable ovarian tumor. Experiment Oncol 1996; 18:87–89.
[11]     L.K. Garkavi, E.B. Kvakina, A.I. Shikhliarova, T.S. Kuz’menko, L.P. Barsukova, Gia. Mar’ianovskaia. Magnetic fields, adaptation reaction and self-organization of live systems. Biofizika 1996; 41:898–905. (Russian).
[12]     L. Gómez-Cuadrado, N. Tracey, R. Ma, B. Qian, V.G. Brunton. Mouse models of metastasis: progress and prospects. Dis Model Mech 2017; 10:1061–1074.
[13]     Z. Grossman, G. Berke. Tumor escape from immune elimination. J Theor Biol 1980; 83:267–296.
[14]     X. Guan. Cancer metastases: challenges and opportunities. Acta Pharm Sin B 2015; 5:402–418.
[15]     Y. Kamigaki, K. Kawakami. Risk of second cancer after initial treatment of breast cancer: An Osaka Cancer Registry Database study. Oncol Lett 2011; 2:963–973.
[16]     N.N. Korpan. Cryoscience and Cryomedicine. Lecture at the Karolinska Institutet, Stockholm, Sweden, 25 March 2009. Vienna: University Facultas Publisher; 2009. pp. 45–83.
[17]     N.N. Korpan. Cryoscience and Cryomedicine From Fundamental Research to Clinical Implications in Scientific Facts. Vienna: University Facultas Publisher; 2009. pp. 66–158.
[18]     N.N. Korpan. Cryosurgery: early ultrastructural changes in liver tissue in vivo. J Surg Res 2009; 153:54–65.
[19]     N.N. Korpan. Cryosurgery: ultrastructural changes in pancreas tissue after low temperature exposure. Technol Cancer Res Treat 2007; 6:59–67.
[20]     N.N. Korpan. Cryosurgery for breast cancer: a challenge in current and future invasive oncology. Clinical experience since 1995. Cryobiology 2013; 66:347.
[21]     N.N. Korpan, editor. Atlas of cryosurgery. New York, Vienna, Sydney, Tokyo, Munich: Springer; 2001. pp. 105–444.
[22]     N.N. Korpan, editor. Basics of cryosurgery. New York, NY: Springer; 2001. pp. 73–225.
[23]     N.N. Korpan, S.G. Chefranov. Estimation of the stable frozen zone volume and the extent of contrast for a therapeutic substance. PLOS ONE 2020; 15:e0238929.
[24]     N.N. Korpan, K. Xu, P. Schwarzinger, M. Watanabe, G. Breitenecker, L.P. Patrick. Cryo-Assisted Resection En Bloc, and Cryoablation In Situ, of Primary Breast Cancer Coupled With Intraoperative Ultrasound-Guided Tracer Injection: A Preliminary Clinical Study. Technol Cancer Res Treat 2018; 1:17:1533034617746294.
[25]     V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 1994; 56:295–321.
[26]     W.C. Lee, S. Kopetz, I.I. Wistuba, J. Zhang. Metastasis of cancer: when and how. Ann Oncol 2017; 28:2045-2047.
[27]     R. Luellmann-Rauch, E. Asan. Taschenlehrbuch Histologie. Gemany, Georg Thieme Publisher; 2019. pp. 724–730.
[28]     R.T. Prehn. The immune reaction as a stimulator of tumor growth. Science 1972; 176:170–171.
[29]     R.T. Prehn. Review/commentary The dose-response curve in tumor immunity. Int J Immunopharmacol 1983; 5:255–257.
[30]     D. Sampson, T.G. Peters, J.D. Lewis, J. Metzig, B.E. Kurtz. Dose dependence of immunopotentiation and tumor regression induced by levamisole. Cancer Res 1977; 37:3526–3529.
[31]     H. Selye. Correlating stress and cancer. Am J Proctol Gastroenterol Colon Rectal Surg 1979; 30:18-20, 25–28.
[32]     T.H.M. Stewart, S. Raman. In: Cellular immune mechanisms and tumor dormancy. Stewart THM, Wheelock EF, editors. Boca Raton, FL: CRC; 1992. p. 315–329.
[33]     N. Tsur, Y. Kogan, E. Avizov-Khodak, D. Vaeth, N. Vogler, J. Utikal, et al. Predicting response to pembrolizumab in metastatic melanoma by a new personalization algorithm. J Transl Med 2019; 17:338.
[34]     J.W. Uhr, T.F. Tucker, R.D. May, H. Siu, E.S. Vitetta. Cancer dormancy: studies of the murine BCL1 lymphoma. Cancer Res 1991; 51:5045s–5053s.
[35]     C. Uyttenhove, J. Maryanski, T. Boon. Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression. J Exp Med 1983; 157:1040–1052.
[36]     E.F. Wheelock, K.J. Weinhold, J. Levich. The tumor dormant state. Adv Cancer Res 1981; 34:107–140.
[37]     E. Yefenof, L.J. Picker, R.H. Scheuermann, T.F. Tucker, E.S. Vitetta, J.W. Uhr. Cancer dormancy: isolation and characterization of dormant lymphoma cells. Proc Natl Acad Sci U S A 1993; 90:1829–1833.
[38]     L.A. Lisencu, E.A. Bonci, A. Irimie, O. Balacescu, C. Lisencu. The Role of Circulating Tumor Cells in Chemoresistant Metastatic Breast Cancer. J Clin Med 2021; 10;10(4):684. doi: 10.3390/jcm10040684.
[39]     F.M. Ghazawi, R. Darwich, M. Le, E. Rahme, A. Zubarev, L. Moreau, J.V. Burnier, D. Sasseville, M.N. Burnier, I.V. Litvinov. Uveal melanoma incidence trends in Canada: a national comprehensive population-based study. Br J Ophthalmol 2019;   103(12):1872-1876. doi: 10.1136/bjophthalmol-2018-312966.
[40]     G.M. Donley, W.T. Liu, R.M. Pfeiffer, E.C. McDonald, K.O Peters, M.A. Tucker, E.K. Cahoon. Reproductive factors, exogenous hormone use and incidence of melanoma among women in the United States. Br J Cancer 2019; 120(7):754-760. doi: 10.1038/s41416-019-0411-z. Epub 2019 Feb 28.
[41]     F. Castro-Giner, S. Gkountela, C. Donato, I. Alborelli, L. Quagliata, L. Cancer diagnosis using a liquid biopsy: challenges and expectations.   Diagnostics 2018; 8:31. https://doi.org/10.3390/diagnostics8020031
[42]     Bedard, PL, Hansen, AR, Ratain, MJ, Siu, LL. Tumor heterogeneity in the clinic. Nature 2013; 501:355–64. https://doi.org/10.1038/nature12627
[43]     P. Pinzani, V. D’Argenio, M. Del Re, C. Pellegrini, F. Cucchiara, F. Salvianti, S. Galbiati. Updates on liquid biopsy: current trends and future perspectives for clinical application in solid tumors. De Gruyter 2021. https://doi.org/10.1515/cclm-2020-1685.
[44]     B. Arneth. Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Canc 2018; 18:527. https://doi.org/10.1186/s12885-018-4433-3
[45]     N.N. Korpan, A.N. Goltsev, O.I. Dronov, M.O. Bondarovych. Cryoimmunology: Opportunities and challenges in biomedical science and practice. Cryobiology 2021.




Article: Estimation of the stable frozen zone volume and the extent of contrast for a therapeutic substance